Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(17)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36735967

RESUMO

Resonant inelastic x-ray scattering (RIXS) using an incident energy tuned to the uraniumN4,5absorption edges is reported from epitaxial films ofα-U3O8and UN. Theory shows that for U3O8the multiplets associated with a 5f1configuration with a ground state of2F5/2and the excited state of2F7/2are observed. However, the strong transition predicted at a transfer energy of 1.67 eV is not observed. We assume this is a consequence of the intermediate state lifetime broadening due to interaction with continuum states when the transferred energy exceeds the onset of the continuum in the presence of the core hole. This hypothesis is supported by the results obtained for the 5f-itinerant system UN, where no sharp transitions have been observed, although the broad scattering response centred at ∼1 eV is considered a signature of a predominantly 5f3configuration in this band-like semi-metallic system. These experiments and theory add important information on these materials, both of which have been investigated since the 1960s, as well as whether RIXS at the uraniumNedge can become a valuable tool for actinide research.

2.
Nat Chem ; 14(3): 342-349, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35145247

RESUMO

Neptunium was the first actinide element to be artificially synthesized, yet, compared with its more famous neighbours uranium and plutonium, is less conspicuously studied. Most neptunium chemistry involves the neptunyl di(oxo)-motif, and transuranic compounds with one metal-ligand multiple bond are rare, being found only in extended-structure oxide, fluoride or oxyhalide materials. These combinations stabilize the required high oxidation states, which are otherwise challenging to realize for transuranic ions. Here we report the synthesis, isolation and characterization of a stable molecular neptunium(V)-mono(oxo) triamidoamine complex. We describe a strong Np≡O triple bond with dominant 5f-orbital contributions and σu > πu energy ordering, akin to terminal uranium-nitrides and di(oxo)-actinyls, but not the uranium-mono(oxo) triple bonds or other actinide multiple bonds reported so far. This work demonstrates that molecular high-oxidation-state transuranic complexes with a single metal-ligand bond can be stabilized and studied in isolation.

3.
Inorg Chem ; 61(4): 1817-1830, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35051333

RESUMO

We performed a systematic study of the complexes of trivalent lanthanide cations with the hydridotris(1-pyrazolyl)borato (Tp) ligand (LnTp3; Ln = La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu) using both high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD-XANES) and resonant inelastic X-ray scattering (RIXS) at the lanthanide L3 absorption edge. Here, we report the results obtained and we discuss them against calculations performed using density functional theory (DFT) and atomic multiplet theory. The spectral shape and the elemental trends observed in the experimental HERFD-XANES spectra are well reproduced by DFT calculations, while the pre-edge energy interval is better described by atomic multiplet theory. The RIXS data show a generally rather complex pattern that originates from the intra-atomic electron-electron interactions in the intermediate and final states, as demonstrated by the good agreement obtained with calculations using an atomic-only model of the absorber. Guided by theoretical predictions, we discuss the possible origins of the observed spectral features and the trends in energy splitting across the series. The insight into the electronic structure of trivalent lanthanide compounds demonstrated here and obtained with advanced X-ray spectroscopies coupled with theoretical calculations can be applied to any lanthanide-bearing compound and be of great interest for all research fields involving lanthanides.

4.
J Synchrotron Radiat ; 28(Pt 6): 1692-1708, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738923

RESUMO

By reviewing a selection of X-ray diffraction (XRD), resonant X-ray scattering (RXS), X-ray magnetic circular dichroism (XMCD), resonant and non-resonant inelastic scattering (RIXS, NIXS), and dispersive inelastic scattering (IXS) experiments, the potential of synchrotron radiation techniques in studying lattice and electronic structure, hybridization effects, multipolar order and lattice dynamics in actinide materials is demonstrated.

5.
Chemistry ; 26(49): 11293-11306, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32519790

RESUMO

The isostructural compounds of the trivalent actinides uranium, neptunium, plutonium, americium, and curium with the hydridotris(1-pyrazolyl)borato (Tp) ligand An[η3 -HB(N2 C3 H3 )3 ]3 (AnTp3 ) have been obtained through several synthetic routes. Structural, spectroscopic (absorption, infrared, laser fluorescence) and magnetic characterisation of the compounds were performed in combination with crystal field, density functional theory (DFT) and relativistic multiconfigurational calculations. The covalent bonding interactions were analysed in terms of the natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) models.

6.
Angew Chem Int Ed Engl ; 58(49): 17558-17562, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31621992

RESUMO

Here we provide evidence that the formation of PuO2 nanoparticles from oxidized PuVI under alkaline conditions proceeds through the formation of an intermediate PuV solid phase, similar to NH4 PuO2 CO3 , which is stable over a period of several months. For the first time, state-of-the-art experiments at Pu M4 and at L3 absorption edges combined with theoretical calculations unambiguously allow to determine the oxidation state and the local structure of this intermediate phase.

7.
J Vis Exp ; (144)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30855566

RESUMO

We describe a method to produce U2O5 films in situ using the Labstation, a modular machine developed at JRC Karlsruhe. The Labstation, an essential part of the Properties of Actinides under Extreme Conditions laboratory (PAMEC), allows the preparation of films and studies of sample surfaces using surface analytical techniques such as X-ray and ultra-violet photoemission spectroscopy (XPS and UPS, respectively). All studies are made in situ, and the films, transferred under ultra-high vacuum from their preparation to an analyses chamber, are never in contact with the atmosphere. Initially, a film of UO2 is prepared by direct current (DC) sputter deposition on a gold (Au) foil then oxidized by atomic oxygen to produce a UO3 film. This latter is then reduced with atomic hydrogen to U2O5. Analyses are performed after each step involving oxidation and reduction, using high-resolution photoelectron spectroscopy to examine the oxidation state of uranium. Indeed, the oxidation and reduction times and corresponding temperature of the substrate during this process have severe effects on the resulting oxidation state of the uranium. Stopping the reduction of UO3 to U2O5 with single U(V) is quite challenging; first, uranium-oxygen systems exist in numerous intermediate phases. Second, differentiation of the oxidation states of uranium is mainly based on satellite peaks, whose intensity peaks are weak. Also, experimenters should be aware that X-ray spectroscopy (XPS) is a technique with an atomic sensitivity of 1% to 5%. Thus, it is important to obtain a complete picture of the uranium oxidation state with the entire spectra obtained on U4f, O1s, and the valence band (VB). Programs used in the Labstation include a linear transfer program developed by an outside company (see Table of Materials) as well as data acquisition and sputter source programs, both developed in-house.


Assuntos
Hidrogênio/química , Oxigênio/química , Compostos de Urânio/química , Eletricidade , Oxirredução , Espectroscopia Fotoeletrônica , Temperatura
8.
Angew Chem Int Ed Engl ; 56(36): 10775-10779, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28686336

RESUMO

The reduction of UVI uranyl halides or amides with simple LnII or UIII salts forms highly symmetric, linear, oxo-bridged trinuclear UV /LnIII /UV , LnIII /UIV /LnIII , and UIV /UIV /UIV complexes or linear LnIII /UV polymers depending on the stoichiometry and solvent. The reactions can be tuned to give the products of one- or two-electron uranyl reduction. The reactivity and magnetism of these compounds are discussed in the context of using a series of strongly oxo-coupled homo- and heterometallic poly(f-block) chains to better understand fundamental electronic structure in the f-block.

9.
Angew Chem Int Ed Engl ; 55(41): 12797-801, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27628291

RESUMO

A dramatic difference in the ability of the reducing An(III) center in AnCp3 (An=U, Np, Pu; Cp=C5 H5 ) to oxo-bind and reduce the uranyl(VI) dication in the complex [(UO2 )(THF)(H2 L)] (L="Pacman" Schiff-base polypyrrolic macrocycle), is found and explained. These are the first selective functionalizations of the uranyl oxo by another actinide cation. At-first contradictory electronic structural data are explained by combining theory and experiment. Complete one-electron transfer from Cp3 U forms the U(IV) -uranyl(V) compound that behaves as a U(V) -localized single molecule magnet below 4 K. The extent of reduction by the Cp3 Np group upon oxo-coordination is much less, with a Np(III) -uranyl(VI) dative bond assigned. Solution NMR and NIR spectroscopy suggest Np(IV) U(V) but single-crystal X-ray diffraction and SQUID magnetometry suggest a Np(III) -U(VI) assignment. DFT-calculated Hirshfeld charge and spin density analyses suggest half an electron has transferred, and these explain the strongly shifted NMR spectra by spin density contributions at the hydrogen nuclei. The Pu(III) -U(VI) interaction is too weak to be observed in THF solvent, in agreement with calculated predictions.

10.
Nat Chem ; 8(8): 797-802, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27442286

RESUMO

Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

11.
J Phys Condens Matter ; 28(8): 086002, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26823458

RESUMO

The physical and chemical properties at low temperatures of hexavalent disodium neptunate α-Na2NpO4 are investigated for the first time in this work using Mössbauer spectroscopy, magnetization, magnetic susceptibility, and heat capacity measurements. The Np(VI) valence state is confirmed by the isomer shift value of the Mössbauer spectra, and the local structural environment around the neptunium cation is related to the fitted quadrupole coupling constant and asymmetry parameters. Moreover, magnetic hyperfine splitting is reported below 12.5 K, which could indicate magnetic ordering at this temperature. This interpretation is further substantiated by the existence of a λ-peak at 12.5 K in the heat capacity curve, which is shifted to lower temperatures with the application of a magnetic field, suggesting antiferromagnetic ordering. However, the absence of any anomaly in the magnetization and magnetic susceptibility data shows that the observed transition is more intricate. In addition, the heat capacity measurements suggest the existence of a Schottky-type anomaly above 15 K associated with a low-lying electronic doublet found about 60 cm(-1) above the ground state doublet. The possibility of a quadrupolar transition associated with a ground state pseudoquartet is thereafter discussed. The present results finally bring new insights into the complex magnetic and electronic peculiarities of α-Na2NpO4.

12.
Inorg Chem ; 54(9): 4556-64, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25859629

RESUMO

The hexavalent and heptavalent sodium neptunate compounds Na4NpO5 and Na5NpO6 have been investigated using X-ray powder diffraction, Mössbauer spectroscopy, magnetic susceptibility, and specific heat measurements. Na4NpO5 has tetragonal symmetry in the space group I4/m, while Na5NpO6 adopts a monoclinic unit cell in the space group C2/m. Both structures have been refined for the first time using the Rietveld method. The valence states of neptunium in these two compounds, i.e., Np(VI) and Np(VII), respectively, have been confirmed by the isomer shift values of their Mössbauer spectra. The local structural properties obtained from the X-ray refinements have also been related to the quadrupole coupling constants and asymmetry parameters determined from the Mössbauer studies. The absence of magnetic ordering has been confirmed for Na4NpO5. However, specific heat measurements at low temperatures have suggested the existence of a Schottky-type anomaly at around 7 K in this Np(VI) phase.

13.
Angew Chem Int Ed Engl ; 53(3): 819-23, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24311434

RESUMO

Single-chain magnets (SCMs) are materials composed of magnetically isolated one-dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide-containing SCM. The 5f-3d heterometallic 1D chains [{[UO2(salen)(py)][M(py)4](NO3)}]n, (M=Cd (1) and M=Mn (2); py=pyridine) are assembled trough cation-cation interaction from the reaction of the uranyl(V) complex [UO2(salen)py][Cp*2Co] (Cp*=pentamethylcyclopentadienyl) with Cd(NO3)2 or Mn(NO3)2 in pyridine. The infinite UMn chain displays a high relaxation barrier of 134±0.8 K (93±0.5 cm(-1)), probably as a result of strong intra-chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T<6 K, with an impressive coercive field of 3.4 T at 2 K.

14.
J Am Chem Soc ; 135(10): 3841-54, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23451865

RESUMO

The heterobimetallic complexes [{UO2Ln(py)2(L)}2], combining a singly reduced uranyl cation and a rare-earth trication in a binucleating polypyrrole Schiff-base macrocycle (Pacman) and bridged through a uranyl oxo-group, have been prepared for Ln = Sc, Y, Ce, Sm, Eu, Gd, Dy, Er, Yb, and Lu. These compounds are formed by the single-electron reduction of the Pacman uranyl complex [UO2(py)(H2L)] by the rare-earth complexes Ln(III)(A)3 (A = N(SiMe3)2, OC6H3Bu(t)2-2,6) via homolysis of a Ln-A bond. The complexes are dimeric through mutual uranyl exo-oxo coordination but can be cleaved to form the trimetallic, monouranyl "ate" complexes [(py)3LiOUO(µ-X)Ln(py)(L)] by the addition of lithium halides. X-ray crystallographic structural characterization of many examples reveals very similar features for monomeric and dimeric series, the dimers containing an asymmetric U2O2 diamond core with shorter uranyl U═O distances than in the monomeric complexes. The synthesis by Ln(III)-A homolysis allows [5f(1)-4f(n)]2 and Li[5f(1)-4f(n)] complexes with oxo-bridged metal cations to be made for all possible 4f(n) configurations. Variable-temperature SQUID magnetometry and IR, NIR, and EPR spectroscopies on the complexes are utilized to provide a basis for the better understanding of the electronic structure of f-block complexes and their f-electron exchange interactions. Furthermore, the structures, calculated by restricted-core or all-electron methods, are compared along with the proposed mechanism of formation of the complexes. A strong antiferromagnetic coupling between the metal centers, mediated by the oxo groups, exists in the U(V)Sm(III) monomer, whereas the dimeric U(V)Dy(III) complex was found to show magnetic bistability at 3 K, a property required for the development of single-molecule magnets.

15.
Nat Chem ; 4(12): 1011-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23174981

RESUMO

Discrete molecular compounds that exhibit both magnetization hysteresis and slow magnetic relaxation below a characteristic 'blocking' temperature are known as single-molecule magnets. These are promising for applications including memory devices and quantum computing, but require higher spin-inversion barriers and hysteresis temperatures than currently achieved. After twenty years of research confined to the d-block transition metals, scientists are moving to the f-block to generate these properties. We have now prepared, by cation-promoted self-assembly, a large 5f-3d U(12)Mn(6) cluster that adopts a wheel topology and exhibits single-molecule magnet behaviour. This uranium-based molecular wheel shows an open magnetic hysteresis loop at low temperature, with a non-zero coercive field (below 4 K) and quantum tunnelling steps (below 2.5 K), which suggests that uranium might indeed provide a route to magnetic storage devices. This molecule also represents an interesting model for actinide nanoparticles occurring in the environment and in spent fuel separation cycles.


Assuntos
Imãs , Manganês/química , Urânio/química , Elementos da Série Actinoide/química , Modelos Moleculares , Nanopartículas , Compostos Organometálicos/química
19.
Inorg Chem ; 49(12): 5341-3, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20503974

RESUMO

Syntheses of the bimetallic uranium(III) and neptunium(III) complexes [(UI)(2)(L)], [(NpI)(2)(L)], and [{U(BH(4))}(2)(L)] of the Schiff-base pyrrole macrocycles L are described. In the absence of single-crystal structural data, fitting of the variable-temperature solid-state magnetic data allows the prediction of polymeric structures for these compounds in the solid state.


Assuntos
Compostos Macrocíclicos/síntese química , Magnetismo , Netúnio/química , Compostos Organometálicos/síntese química , Urânio/química , Ligantes , Compostos Macrocíclicos/química , Estrutura Molecular , Compostos Organometálicos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...